- Data
- Formation détaillée
Formation Anticipez vos enjeux business grâce à un système décisionnel et BI performant
Du reporting à l’automatisation prédictive, alimentation, stockage et restitution
Objectifs
- Maitriser la chaîne de valeur, et les métiers d’un système décisionnel, de la collecte-alimentation des données, au stockage, puis à leur visualisation
- Savoir construire une architecture de données (data warehouse, data lake, data mesh, modern data stack) compatible avec l’organisation de l’entreprise tout en respectant la gouvernance
- Appréhender l’état de l’art de l’analyse prédictive (Intelligence Artificielle) et de l’automatisation au travers d’études de cas
- Acquérir la méthodologie pratique de conception, modélisation, et mise en œuvre adaptée à vos enjeux de performance
Programme
1 – Du Décisionnel au Big Data
- L’impact de l’économie des données sur le système décisionnel : une opportunité de création de valeur
- Big Data : révolution ou évolution
- De la BI à la Data Science : données In-Memory, temps réel, Embedded BI, NoSQL, Internet des objets, Intelligence augmentée…
Études de cas : valeur créée et impact sur les modèles d’affaires
2 – Nouvelle architecture du Système d’Information décisionnel (SID)
Du reporting à la Business Process Intelligence
- Idéation : embarquer les métiers et l’informatique dans le projet décisionnel
- De la Business Intelligence à la Business Analytics
- Faire évoluer les Data Marts existants vers un système centralisé
- Intégrer la confidentialité des données personnelles et les contraintes du RGPD dès la conception
L’architecture d’un système décisionnel
- Modèle centralisé ou fédéral : choix technique et de gouvernance
- Augmenter l’autonomie des métiers : concept de « Domain Driven Design » (DDS) et de « Data as a Product » (DaaP)
- Sécurité et confidentialité des données
Les principaux schémas d’architecture d’un SID
- Architecture centralisée autour du data warehouse, du data lake, du “lakehouse”
- Gouvernance décentralisée : le data mesh
3 – Plateforme Data
Outils d’intégration de données
- Fonctionnalités attendues d’un logiciel ETL (Extract, Transform, Load) ou ELT
- Changed Data Capture (CDC) et collecte en temps réel
- Panorama des offres ETL/ELT : Informatica, IBM Datastage, Microsoft SSIS, Talend, etc.
- Les nouveaux outils de préparation de données (Talend Data Preparation, Tableau Prep, Qlik, Trifacta…)
Stockage des données structurées et non structurées
- Architectures techniques : on-premise, cloud, in-memory, edge computing…
- Revue des offres : Oracle, IBM, Teradata, SAP, Microsoft et les nouveaux entrants.
- Différence et complémentarité entre Data Lake et Data Warehouse
- Bases NoSQL : panorama (MongoDB, MarkLogic, Cassandra, ElasticSearch…)
- Bases graphes : usages et technologies (Neo4j)
- Hadoop / MapReduce
Restitution
- Outils traditionnels
- Query et Reporting, Ad Hoc Analysis, Cubes OLAP,…
- Positionnement des offres : SAP Business Objects, IBM Cognos, Microstrategy, Information Builders…
- Outils de BI agile / Self service BI
- Positionnement des offres : Tableau, Qlik, TIBCO Spotfire, Microsoft PowerBI, Domo…
- Shadow IT dans le décisionnel
- Mise en place d’un Centre de Compétences en BI (CCBI)
- Modern Data Stack
- Concepts de la Modern Data Stack : quelles différences réelles ?
- Tableau des outils : Fivetran, Dbt, Snowflake, DataBricks Looker, Apache AirFlow, Amazon Redshift, Google BigQuery…
4 – Modéliser les informations destinées à l’aide à la décision
- Objectifs de la modélisation : est-ce encore utile ?
- Modélisation en étoile / flocon
- Garantir la fiabilité des consolidations (DQM)
- Les référentiels et la stabilité historique du périmètre – Master Data Management (MDM)
5 – Le portail décisionnel
- Les interfaces pour « exposer » l’information décisionnelle ?
- Data Visualization
- Panorama des principaux graphiques que vous ne connaissez pas encore
- Raconter l’histoire de ses données, le Data Storytelling
- Intégration du portail décisionnel au portail d’entreprise
- Monétiser ses données vs Open Data
6 – De l’intelligence artificielle à l’intelligence augmentée
- Qu’est-ce que l’intelligence augmentée et l’automatisation des processus décisionnels : machine learning, deep learning, predictive analytics, Generative Artificial Intelligence…
- Construction de la matrice d’apprentissage, choix des méthodes et des algorithmes
- Focus sur l’Intelligence Artificielle Générative (IAG)
7 – MDM et Gouvernance : comment les intégrer dans le projet décisionnel
- Gouvernance des données et catalogue des données
- Le Master Data Management
- Data Quality Management (DQM) et Master Data Management (MDM)
- Étude de cas : utiliser une base de données graphes pour cartographier les données de référence
- Conformité
- Le RGPD, et son impact sur le projet décisionnel – collaboration avec le DPO
- Autres règles de conformité en cours de déploiement (spécifiques à un secteur, Digital Services Act (DSA), Digital Market Act (DMA), Norme ISO 24143…)
8 – La mise en œuvre du projet décisionnel
Étude préalable
- Facteurs clés du succès d’un Système d’Information Décisionnel
- Acculturation à la donnée : impliquer les directions générales et les utilisateurs
Groupe de projet
- Acteurs, rôles et livrables – Sous-traitance : quoi, quand, comment ?
De l’expression des besoins à la modélisation
- Double démarche : prototypage et industrialisation
- Du Business Model Canvas (BMC) à l’industrialisation : étapes concrètes
Approche spécifique de la recette
- Recette du Système Décisionnel : qui impliquer et comment ?
- Évaluer le retour sur investissement
Le déploiement au-delà du projet pilote
- Industrialisation du système décisionnel (du DevOps au DataOps)
- Administration, Sécurisation, Mesure des usages et amélioration continue
9 – Valorisation des données
- Méthodes actuelles et futures de valorisation des actifs immatériels : évaluer la valeur du système décisionnel
- Évaluer l’impact carbone du système décisionnel
À qui s’adresse
cette formation ?
Public
Directeurs et chefs de projets décisionnels, concepteurs, ingénieurs d’études, consultants, directions informatiques et directions fonctionnelles, maîtrise d’ouvrage et maîtrise d’oeuvre, Product Owner.
Prérequis
Aucun.
Animateur
Le mot de l'animateur
« Indispensable au pilotage de l’entreprise, le système décisionnel a beaucoup évolué. Multidimensionnel, ouvert aux données non structurées, décentralisé dans les métiers, le Système d’Information Décisionnel combine des technologies telles que le Data Warehouse, le Data Lake, l’analyse prédictive, etc. Spécialiste de ce sujet depuis plus de 30 ans, je partage avec vous les meilleures pratiques et l’état de l’art des outils. »
Philippe NIEUWBOURG
Découvrir l'animateurModalités
Méthodologie pédagogique
Cette formation concrète et pragmatique est illustrée par de nombreux exemples pratiques issus d’une expérience et d’un savoir-faire acquis sur de nombreux projets de taille variée au sein d’établissements et d’entreprises de différents secteurs.
Vidéo-projection. Support de cours remis en début de formation et téléchargeable.
Méthodologie d’évaluation
Le stagiaire reçoit en amont de la formation un questionnaire permettant de mesurer les compétences, profil et attentes du stagiaire.
Tout au long de la formation, les stagiaires sont évalués au moyen de différentes méthodes (quizz, ateliers, exercices et/ou de travaux pratiques, etc.) permettant de vérifier l'atteinte des objectifs.
Un questionnaire d'évaluation à chaud est soumis à chaque stagiaire en fin de formation pour s’assurer de l’adéquation des acquis de la formation avec les attentes du stagiaire.
Une attestation de réalisation de la formation est remise au stagiaire.
À qui s’adresse
cette formation ?
Public
Directeurs et chefs de projets décisionnels, concepteurs, ingénieurs d’études, consultants, directions informatiques et directions fonctionnelles, maîtrise d’ouvrage et maîtrise d’oeuvre, Product Owner.
Prérequis
Aucun.
Autres formations sur le même thème
Data
Découvrez les applications du Machine Learning en entreprise
Prochaines sessions :
- 6-7 Juin 2024
- 26-27 Sep 2024
- 12-13 Déc 2024
2197 € / pers. HT
Voir toutes les sessions Data
Maîtrisez la complexité des architectures de données
Prochaines sessions :
- 4-6 Mars 2024
- 10-12 Juin 2024
- 23-25 Sep 2024
- 9-11 Déc 2024
2960 € / pers. HT
Voir toutes les sessions Data
Business Analytics, Data Science et DataViz : optimisez l’utilisation de la donnée
Prochaines sessions :
- 21-22 Mars 2024
- 6-7 Juin 2024
- 5-6 Déc 2024
2197 € / pers. HT
Voir toutes les sessions Data
Big Data : enjeux, applications et méthodologie
Prochaines sessions :
- 14-15 Mars 2024
- 13-14 Juin 2024
- 19-20 Sep 2024
- 28-29 Nov 2024
2197 € / pers. HT
Voir toutes les sessions Data
Valorisez vos données grâce au Deep Learning
Prochaines sessions :
- 7-8 Déc 2023
- 30-31 Mai 2024
- 17-18 Oct 2024
2197 € / pers. HT
Voir toutes les sessions Nouvelle Formation
Data
Data Mesh : retours d’expérience et guide pratique de mise en place
Prochaines sessions :
- 7-8 Mars 2024
- 13-14 Juin 2024
- 26-27 Sep 2024
2197 € / pers. HT
Voir toutes les sessions Nouvelle Formation
Data
Mettre en place les reporting CSRD – ESG en s’appuyant sur des données pertinentes
Data
Gouvernance des données métiers : enjeux, méthodologie et outils
Prochaines sessions :
- 4-6 Déc 2023
- 5-7 Fév 2024
- 18-20 Mars 2024
- 3-5 Juin 2024
- 16-18 Sep 2024
- 4-6 Nov 2024
- 2-4 Déc 2024
2960 € / pers. HT
Voir toutes les sessions